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A new writer adaption method based on incremental linear discriminant analysis (ILDA) is presented in
this paper. We first provide a more general solution for ILDA and then present a Weighted ILDA
(WILDA) approach. Based on ILDA or WILDA, the writer adaptation is performed by updating the LDA
transformation matrix and the classifier prototypes in the discriminative feature space. Experimental
results show that both ILDA and WILDA are very effective to improve the recognition accuracy for
writer adaptation, and WILDA outperforms ILDA. The proposed WILDA based writer adaptation method

can reduce as much as 47.88% error rate on the writer-dependent dataset while it only has as less as
0.85% accuracy loss on the writer-independent dataset. It indicates that writer adaption using WILDA
can significantly increase the recognition accuracy for the particular writer while having limited impact
on the accuracy for general writers.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The ability to transcribe handwritten characters to a compu-
terized text format is a great benefit to inputting, organizing and
annotating data in various applications such as the input, storage
and distribution of notes or messages [3,22,32]. The successes of
products, such as PDA, smart cell phone, and Tablet PC, are the
evidence that users have interest in such capabilities. However,
the large variability of handwriting styles across individuals
makes handwriting recognition a challenging problem. Although
great progress has been achieved in the field of online hand-
written Chinese character recognition (OHCCR) during the past 40
years [8,12,22,25,32], recent researches on unconstrained cursive
online handwriting recognition show that this problem is far from
having been completely solved. Jin et al. reported that for the
recognition of 6763 categories of unconstrained handwritten
characters from the SCUT-COUCH dataset [21], the best recogni-
tion accuracy was only 92.43% using the state-of-the-art feature
extraction method plus linear discriminant analysis (LDA)
classifier [5]. Wang et al. [39] reported that using a state-of-the-
art recognizer for the classification of the samples from a new
unconstrained online handwritten dataset CASIA-OLHWDB1, the
highest accuracies achieved on average, 92.44% for 4037 cate-
gories and 92.91% for 3866 categories, respectively, were
achieved, which are much lower than those reported on other
previous databases, where the handwritten samples were much
more regularly written (e.g., 98.56% on HCL2000 [24], 97.84% and

* Corresponding author.
E-mail address: lianwen.jin@gmail.com (L. Jin).

0925-2312/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2009.11.039

98.24% on Japanese Kanji [23]). On the other hand, the required
recognition rate for the recognizer by ordinary users is very high.
For example, tests with keyboard typing have shown that the
writers tolerate random errors up to 1% while 0.5% is unnoticeable
and 2% is intolerable [9]. All of these indicate that the
unconstrained OHCCR problem is far from being completely
solved, especially when using some recently available challenging
datasets, such as SCUT-COUCH [21] or CASIA-OLHWDB1 [39].
One challenge of unconstrained OHCCR we face is that there are
too many different writing styles to be handled when designing
a general purpose handwriting recognizer. Writer-independent
systems trained from examples require large training sets from
many writers to deal with this variability, but it cannot yet achieve
very high performance for unconstrained OHCCR [21,39].
In contrast, writer-dependent systems can be trained on a specific
user’s handwritten samples to achieve higher accuracy [33]. It is
generally agreed that, for a given handwriting recognition task, a
writer-dependent system usually outperforms a writer-independent
system [38]. The writer adaption is the process of converting a
writer-independent system learned from the writer-independent
dataset to a writer-dependent system, which is turned for a
particular writer using a specific incremental data. As the writer-
adaptation is an online incremental learning process to learn the
particular writing behavior and adaptively updating the classifi-
cation model, we usually need an initial classification model
trained on general-purpose writer-independent dataset and then
conduct the adaptation learning processing. This adaption has the
potential advantage of significantly increasing recognition ac-
curacies for a particular writer, which is very useful for a real
world application, such as building a high performance, writer
adaptive (personalized) online handwritten character input
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method. In the past, a number of writer adaptation handwriting
recognition methods have been proposed [3,7,16,20,33,38].
Szummer and Bishop [33] proposed a discriminative writer
adaptation method through clustering the writing styles, training
a set of corresponding classifiers and then choosing an appro-
priate combination of classifiers for a particular writer. Connel
and Jain [3] proposed an adaptive online handwriting recognition
model, where another writer-dependent model was used to
identify the styles present in a particular writer’s training data,
and then these models are retrained using the writer’s data. But
the adaptation in this way depends on the correctly clustering
users’ writing styles by classification confidence. Vuori [38]
proposed a simple prototype based adaptation system using k
nearest neighbor (KNN) classifier. The whole adaptation consisted
of three steps, i.e. adding new prototypes, deactivating confusing
prototypes, and reshaping existing prototypes. Kienzle and
Chellapilla [16] presented a personalized handwriting recognition
approach by minimizing a regularized risk function of SVM.
LaViola and Zeleznik [20] proposed a practical technique of using
a writer-independent recognizer to improve the accuracy of
writer-dependent symbol recognizer based on the AdaBoost
learning algorithm. Unfortunately, all these methods are designed
for small scale handwriting recognition problem (for example,
English letter, digit or symbol recognition), where the class
number is relatively small; thus many of the adaptation methods
are not practically applicable (such as SVM or AdaBoost based
adaptation methods) for handling large datasets with many
classes, such as Chinese handwriting recognition problem invol-
ving thousands of classes and hundreds of thousands of training/
testing handwritten samples.

On the other hand, as a well known scheme for feature
extraction and dimension reduction, linear discriminant analysis
(LDA), also known as Fisher discriminant analysis (FDA), has been
widely used in OLHCCR [5,22,24,25] and other pattern classification
tasks [10,13,15,31]. The LDA seeks the best linear projections of data
for discrimination, under the assumption that the classes have
equal covariance Gaussian structure [6]. However, recent researches
demonstrate that the classical LDA has some problems [34]. The
first is heteroscedastic problem [27] that is the LDA models
different classes with identical covariance matrices. Therefore, it
fails to take account of any variations in the covariance matrices
between different classes. The second is multimodal problem [11]
that is the samples in each class cannot be approximated by a single
Gaussian in many applications. Instead, a Gaussian mixture mode
(GMM) [2] is required. However, the LDA models each class by a
single Gaussian distribution. The third is class separation problem
[35]. In applications, distances between different classes are
different and the LDA tends to merge classes that are close together
in the original feature space. The fourth is the small sample size
(SSS) problem [37,40], i.e. the number of training samples is less
than the dimension of the feature space, which is also known as
singularity problem [18].

To solve the heteroscedastic problem, Decell and Mayekar [4]
proposed a method to obtain a subspace to maximize the average
interclass divergence, which measured the separations between
the classes. This criterion takes into account the discriminative
information preserved in the covariances of different classes.
Kumar and Andreou [19] developed the heteroscedastic discrimi-
nant analysis (HDA) by dropping the identical class covariances
assumption. Jelinek [14] proposed a different way to deal with the
heteroscedastic problem in subspace selection by the gradient
steepest ascent method to find the projection matrix. Loog and
Duin [27] introduced the Chernoff criterion to heteroscedasticize
LDA.

A straightforward approach to solving the multi-model pro-
blem is to employ the GMM approach. Hastie and Tibshirani [11]

combined GMM with LDA by directly replacing the original single
Gaussian in each class by a Gaussian mixture model.

To deal with the class separation problem, Lotlikar and Kothari
[28] developed the fractional-step LDA (FS-LDA) by introducing a
weighted function. Loog et al. [26] developed another weighted
method for LDA, namely the approximate pairwise accuracy
criterion (aPAC). The advantage of aPAC is that the projection matrix
can be obtained by the eigenvalue decomposition. Lu et al. [29]
combined the FS-LDA and the direct LDA for very high dimensional
problems. However, both FS-LDA and aPAC do not use the
discriminative information in different class covariances. To reduce
this problem, Tao et al. [36] proposed the general averaged
divergences analysis framework by using geometric mean for
subspace selection.

To deal with the SSS problem, many approaches have been
proposed, such as pseudo-inverse LDA, PCA+LDA and regularized
LDA [18]. In recent years, Ye et al. [40] proposed the two
dimensional LDA (2DLDA). Motivated by the successes of the
2DLDA, Tao et al. [37] proposed the general tensor discriminant
analysis (GTDA) to solve the SSS problems.

Although the LDA and its extensions have been widely used in
pattern recognition field, the typical implementation of these
techniques assumes that a complete dataset for training is given
in advance and it is often beneficial to learn the LDA model from
large training sets, which may not be available initially. This
motivates techniques for incrementally updating the LDA model
when more data become available [17,30]. Several incremental
versions of LDA (ILDA) have been suggested [17,30,41], which
have successfully been applied to online learning tasks such as the
classification of data streams [30], face image retrieval [17] and
face recognition [41].

Although a number of researches on writer adaptation or ILDA
were conducted, the ILDA based writer adaptation handwriting
recognition remains unexploited. Motivated by this problem, we
investigate how to adapt a writer independent recognizer to make it
writer dependent based on the incremental learning of LDA model
under the LDA based OLHCCR classification framework for the first
time in this paper. We first provide a general incremental learning
solution for LDA, and then propose a weighted incremental linear
discriminant analysis (WILDA) approach for writer adaptive hand-
writing recognition by taking into account the issue of uncertain
number of incremental data for writer adaption in an online
handwriting recognition application. Based on the incremental
learning of the LDA model using ILDA or WILDA, the writer adaptation
is performed by updating the LDA transformation matrix and the
classifier prototypes in the discriminative feature space. Experimental
results show that both ILDA and WILDA are very effective to improve
the recognition accuracy for particular writers, and WILDA outper-
forms ILDA. The experimental results indicate that the writer adaption
using the WILDA approach can not only significantly increase the
recognition accuracy for the particular writers but also have limited
impact on the accuracy for the general writers.

The rest of this paper is organized as follows. Section 2
presents a general solution for the ILDA algorithm, and then
proposes a new weighted incremental linear discriminant
analysis (WILDA) approach. Classifier design based on LDA and
the writer adaptation based on ILDA/WILDA are given in Section 3.
Section 4 presents the experimental results and discussion.
Finally, the conclusions are summarized in Section 5.

2. Incremental learning of linear discriminant analysis (LDA)
model

Pang et al. [30] proposed an incremental LDA for classification
of data streams. However, the final solution of this method is too
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complex, since the sequential incremental learning condition and
the chunk incremental learning condition are considered sepa-
rately. In addition, for each case, the solution is divided into two
cases depending on whether the new class sample is added or not.
In this section, we first give a brief introduction to LDA, and then
present a general incremental learning solution for LDA based on
the research in [30]. Furthermore, considering the problem of
uncertain number of incremental data for writer adaption in an
online handwriting recognition application, we present a
Weighted ILDA (WILDA) method in Section 2.3.

2.1. Introduction to LDA

LDA [6] is a supervised learning method, which utilizes the
category information associated with each sample. The goal of LDA
is to seek directions for efficient discrimination through maximiz-
ing the between-class scatter while minimizing the within-class
scatter. Mathematically speaking, the within-class scatter matrix
S, and between-class scatter matrix S, are defined as

M M N
Sw= %= ¢ —m;)(x{ —m;)" 1)
j=1 j=1i=1
M
Sp= Y Ni(m;—m)(m;—m)" 2)
ji=1

where x¢ is the ith sample of class j, m; = (1/N) 31" x? is the
mean of class G, m=(1/N) ZJ 1 Njm; is the mean vector of all
classes, M is the number of classes N; is the number of samples of
class j, and N = Z,M: 1 Nj is the total sample number.

For LDA transformation matrix, Wy, can be derived by
maximizing the following object function:

Wi, SpWiq|
Wi SwWigal

This solution can be shown to correspond to the generalized
eigenvectors of the following equation:

Spw; = /;Sww; “4)

If S,, is a nonsingular matrix then the objection function of Eq.
(3) is maximized when the transformation matrix W, consists of
D generalized eigenvectors corresponding to the D largest
eigenvalues of S,'S, [6]. In other words, by sorting the
eigenvalues in descending order, we can then use the correspond-
ing first D eigenvectors to form the columns of the LDA matrix
W,4.. In practical application, eigenvectors with low eigenvalues
can be discarded to compress a high dimensional feature to a low-
dimensional feature with an enhanced discrimination. Note that
there are at most M—1 nonzero generalized eigenvalues, so an
upper bound on D is M—1.

JWye) = 3

2.2. A general solution for incremental LDA

The problem of Incremental LDA (ILDA) can be described as
follows: when new samples are being presented, how can we
update the corresponding LDA model parameters, including the
class mean vector mj, j=1,2, ...,M, mean vector m of all classes,
within-class scatter matrix S,,, and between-class scatter matrix
Sp. With these updated parameters, the new updated LDA
transformation matrix W4, can be computed accordingly.

Suppose we have L incremental samples Y={y;} (i=1, ...,L) in
P classes. Without loss of generality, we assume that l of L
incremental samples belong to class G; (i=1,...,P). It is worth-
while to note that some of the class C; may be newly introduced
classes. Let m’and m” represent the mean vector of class C; and all

incremental samples, respectively, which are computed by

I
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The incremental within-class scatter matrix S}, and between-class
scatter matrix S} of the incremental samples are given as follows:

LZlmy (6)
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Since some classes may or may not be updated by the new
samples and some new classes containing only new samples may
be introduced, the merged class set €2 can be therefore divided
into three parts: updated class set ¥, no updated class set @, and
newly introduced class set I'. We assume the class number is
updated from M to T (T>M, T>P), and the sample number of
each class is updated as N; = N;+1;, where i=1, ..., T. It is obvious
that, if Cie®, liIO, and if Ciel', Ni=0.
It can be easily derived that the updated mean my for class C; is
updated by
. Nm;+m’

mj= == =1 T ©
1

and the mean vector m’ of total samples is

, _ Nm+Lm¥
~ N+L
Then the updated between-class scatter matrix S, after

incremental data has been presented as follows:

(10
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The updated within-class scatter matrix S, is

Zz(x/m m) ¢ —m)’ = ZZ, (12)
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It can be derived (see [30] for
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The sum for the last three terms of Eq. (13) is rewritten as
follows (see Proof A in the Appendix):
]2

®, +z>2( R

(N +l N2 ;(y mj)(y?)fmj)T
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From Egs. (13) and (14
can be rewritten as
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), the updated within-class matrix (12)
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It is obvious that
( my) —m;)(my - m)" =

jeZFZj =0 (16)
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Using the conclusions of Eq. (16) in (15), the updated within-
class matrix S|, is finally given as follows:

Njl;
7 (N; +l)

S, =Sw+S, +Z (my —my)(m/ — m;)’ 17)

Once we have updated the between-class scatter matrix S,
according to Eq. (11) and the within-class matrix S;, according to
Eq. (17), we can now get the updated LDA transformation matrix
W, by conducting the eigenvalue decomposition of §',"'S;,.

Compared with the method proposed in [30], our approach
provided a general solution for the ILDA. In [30], the solution was
separated into two situations depending on whether the incre-
mental data were sequence data or chunk data. Furthermore, in
either situation, the solution was separated into two cases again
according to whether the new class is introduced or not. If the
new class was introduced, the number of the new class must be 1.
In contrast, our approach can solve all of the above situations
using a uniform framework without restricting the number of
newly introduced classes.

2.3. Weighted Incremental LDA for writer adaption for online
handwritten Chinese character recognition

For the problem of writer adaption, the handwritten character
samples of a particular writer serve as the incremental sample set
Y ={y;}}_, under the ILDA framework. From Egs. (9)-(12) and
(17), we can see that the performance of adaptation could be
affected by the number of new samples used. In general, if the
new samples of a particular writer for learning the ILDA model are
sufficient, it can be expected that the updated ILDA model would
give an improved accuracy for the specific writer, but may
significantly decrease the accuracy for general writers. Otherwise,
if the updating samples only make up a small proportion of the
total training data for updating the LDA model, the performance
improvement might not be so significant in such situation though
the accuracy loss for the general writer may be very little.

However, in practical application, the amount of data that a
particular writer provides is uncertain and various for different
characters. On the other hand, we do not expect to make the
adaptation to a specific writer’s handwriting style at the cost of
losing too much generality for other writer styles or to only have
little improvement for a particular writer. In other words, a good
trade-off between writer-dependent and writer-independent
handwriting recognition is expected. To achieve the trade-off,
we induce a weighted update mechanism to the ILDA.

Suppose we have J; of L incremental samples belonging to class
G (i=1,...,P), and the original training number of the class C; is N;,
a weighted parameter r is introduced to compute the weighted
within-class scatter matrix $), of the incremental samples defined
as follows:

P
= ZQZ( v} —m)y—m))",

=1 j=1

r 7_Ni when N; #0, ; #0
1
where Q=4 . when N; =0, [; £ 0 18
0 when ;=0

Similarly, the updated mean vector m; of each class and the
mean vector m’ of total samples are modified accordingly as
follows:

Nym;+rN;m) _ m; -+ rmy when N; #0,[; #0
_, Nl(‘1+r) (l—H‘) i 1 T
m; = m; when N; #0, [; =0, t=hee
m? when N; =0, ; #0
(19)
o NmNmY  m o rm? 20
- (‘l +r)N - 1471

The updated weighted between-class scatter matrix S;, is given
as follows:

r
Sp= ) _ Qi(m;—m')(m;—m’)’,
i=1
l; when N; =0
where Q; =< N; when N; =0 21
(1+rN; whenN;#0

It is worth noting that the WILDA approach is equal to the ILDA
approach under the situation [;=0 or N;=0. Since no incremental
samples are added to class C; when [;=0, N;=0 means that the
class C; is a newly introduced class.

According to the above equations, the weighted within-class
scatter matrix S can be derived by updating (18)-(20) to Eq. (17)
accordingly. Then the weighted ILDA transformation matrix W,da
can be computed by conducting the eigenvalue decomposition of
s'.Vs; . We refer to this modified ILDA as WILDA in this paper.

In general, the parameter of r is for purpose of controlling the
ratio of the partial training data, which are used for updating LDA
parameters to the whole training data. In other words, larger
weighted parameter r, which indicates a larger proportion of
writer-specific incremental data for updating the LDA model
parameters, means that the WILDA model turned out to be much
more adapted for a particular writer’s styles. This would result in
higher recognition accuracy on the particular writer’s hand-
written samples, but much more accuracy loss for the general
writer, and vice versa. Therefore, the parameter of r should be
carefully chosen to achieve a good trade-off between writer-
dependent and writer-independent handwriting recognition.
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Later in the experimental Section 4.5, we will design a set of
experiments to see how this parameter influences the perfor-
mance of writer-dependent dataset and writer-independent
dataset.

3. Classifier design and writer adaptation based on ILDA/
WILDA

Suppose there are M character classes { {Ci}ﬁ‘/’: 1}, each modeled
by a prototype,; = {m!}, where prototype m/ is a D dimensional
vector in some feature space. We use A = {m§7 };V':] to denote the
set of prototype parameters for the classifier. In this paper, we use
the 8-directional feature extraction method proposed by Bai and
Huo [1] to extract D; raw feature vector x for a given online
handwritten Chinese character sample for which the original
feature dimension is 512, i.e. D;=512. The D; raw features are
then transformed into a new feature vector y of dimension D in
the LDA space by using a D; x D LDA transformation matrix W,
i.e. y =W/, x, where D <D;. If D <D;, the dimension reduction is
achieved by the LDA. The diagram of our proposed writer
adaptation for online handwritten Chinese character recognition
using ILDA/WILDA is shown in Fig. 1, which consists of the
training phase to train a general baseline classifier, the writer
adaptation phase using ILDA/WILDA, and the classification phase.

In the training phase, suppose we have a training dataset

) = 120M
Xii_a N,

contributed by a large number of writers. The LDA transformation
matrix Wy, is first learned using the training data, and then the
class prototype m? is given by

of N training samples belonging to M classes,

N; N,

1 ' . 1 'j )

m; = N Z Wigx! = ﬁjwltda Z X/’ = Wij,m, (22)
i=1 i=1

In the classification phase, the feature vector y in the LDA

space is compared with each of the M character prototypes, and a

discriminant function is computed for each class C; as follows:

(XA W,4) = —mjinHy—mf’ | = —m'_inHWfdax—mf [ (23)

The class that gives the maximum discriminant function is
considered to be the recognized class, i.e.

X € G, if k = argmaxg;(x,A,W,4,) (24)
i
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In the writer adaptation phase using the ILDA or WILDA
approach, when new handwritten character samples of a parti-
cular writer are presented, the LDA transformation matrix Wy, is
updated, respectively, through updating the between- and within-
class scatter matrixes according to Eqgs. (12) and (17) for ILDA,
and Eqgs. (18) and (21) for WILDA, respectively. Then the classifier
prototype parameter set A={m;} , is updated according to
Egs. (19) and (22).

4. Experimental results
4.1. Data preparation and experimental setup

The benchmark dataset used in this paper comes from the SCUT-
COUCH database. It is a revision of SCUT-COUCH2008 [21], which is
now contributed by more than 168 participants. One characteristic of
the SCUT-COUCH dataset is that all the samples were collected in a
natural way without any guidance or constraint for the writing
styles, therefore, some of the samples were written cursively. All
characters were written in an unconstrained manner. This database
is a comprehensive dataset composed of 8 subsets: GB1 (3755 level 1
GB2312-80) simplified Chinese character, GB2 (3038 level 2 GB2312-
80) simplified Chinese character, traditional Chinese character (5041
classes), word (8888 classes), Pinyin (2010 classes), digit (10 classes),
alphabet (52 classes) and symbol (122 classes). The SCUT-COUCH
database is available at http://www.hcii-lab.net/data/SCUTCOUCH].

Two subsets of SCUT-COUCH dataset are used in our experi-
ments. One is the GB1 subset, which contains 168 writers’ samples
of 3755 categories of Chinese characters, and the other is the
Word8888 subset, which consists of 30 writers’ samples of 8888
categories of most frequently used handwritten words. Fig. 2 shows
some typical handwritten Chinese character samples from the
SCUT-COUCH GB1 subset and Word8888 subset. It is worthwhile to
notice that a number of characters appear in different places of
different words for many times, such as the character «#> appears
in the words “&E , BE , R R, BT, LK , it&K >, etc. This
indicates that when the Word8888 data were collected from a
particular writer, the same character was written for many times
in accordance with the context of the word corpus. Table 1 gives
the statistics on the 36 most frequently reused characters to
show the frequency of a character repeated in different words.
Data collected in this way provide us with particularly realistic
writer-independent incremental handwritten samples.

T_' - Feature N LDA
rainin .
g Extraction ”
samples g Transform

LDA Model
(S, Sy Wiga )

Training
s
Incremental learning Classifier

Incremental | ILDA/WILDA of LDA updated TLDA: W4, > Wiy, Model

samples > > (A, Wy}
Model WILDA- W — W'] Ida
{8,y W, '} da
Adaptation
Classification — Vv Recognition

Testing Feature LDA Classification: output
sample X Extraction Transform 7| xeCpifk=arg ;nax 8 (% A, Wiy,) >

Fig. 1. Diagram of the writer adaptive handwriting recognition system.
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%% PV hiz. Pk PrE 3R
%6 Pivw PRR X 8 B PR
KRB R B TR AR
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Table 1

The statistics of the top 36 most frequently reused characi

ters.

Character  frequency  Character frequency Character frequency Character frequency

of

of of of

repetition repetition repetition repetition
— 277 £ 98 X 83 4 69
r 251 i 95 = 82 p; 69
A 189 = 95 iz} 77 2] 68
X 151 R 95 A 77 BE 68
=] 150 L 95 a] 73 = 66
k2 141 £ 87 i 72 ith 66
72 117 A~ 87 T 72 F 66
T 109 e 3 87 i 71 Bt 65
' 101 R 84 69 x 64
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All of the handwritten word samples are manually segmented
into isolated characters, which results in 2078 categories of
19,595 isolated Chinese characters, to form a new dataset which
we name it as IncCouchDB. In other words, we have a general
dataset that contains 168 sets of 3755 classes of GB1 Chinese
character (we refer to it as CouchGB1 thereafter) and a writer-
dependent incremental dataset IncCouchDB that contains 30 sets
of 2078 classes within GB1 level Chinese characters. The two
datasets do not share any common writers. The dataset CouchGB1
is used to train/test a baseline general purpose writer-indepen-
dent LDA classifier, and then the incremental dataset IncCouchDB
is used to train/test the Incremental LDA model for writer
adaptation. It should be noted that in our experiment, new
writers are introduced in the IncCouchDB dataset.

To build a general purpose classifier, we randomly select 134
(or 79.16%) sets of data from the CouchGB1 to build a writer
independent baseline classifier, and then use the remaining 34 (or
20.84%) sets to test the performance of the baseline classifier, as
well as to evaluate the influence after the adaptation has been
conducted for specific writer. For each particular writer’s hand-
written samples from the IncCouchDB dataset, we randomly select
50% of the data in each category for learning the Incremental LDA
model (ILDA or WILDA), and then use the remaining 50% data to
test the writer adaption performance.

4.2. Baseline performance on CouchGB1 and IncCouchDB before
writer adaption with different LDA dimension parameters

After the classifier is trained by the 134 sets of CouchGB1 data,
its performance is evaluated on the remaining 34 sets of CouchGB1
data and on the new IncCouchDB dataset (30 sets). Table 2 shows
the average recognition rate of the testing sample of CouchGB1,
with different LDA dimensions D. Table 3 shows the recognition
accuracy on the dataset of IncCouchDB. Due to the limited length

Table 2
Classification accuracy (%) for the CouchGB1 dataset with different LDA dimension D.

LDA dimension Recognition rate (%)

Top 1 Top 5 Top 10 Top 20
512 94.00 99.05 99.51 99.73
256 93.97 99.05 99.50 99.73
160 93.83 99.03 99.50 99.73
96 93.25 98.93 99.44 99.70
Table 3
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of the paper, we list only the accuracies for some typical writers,
especially the writers whose samples are hard to be recognized.

From Tables 2 and 3, it can be seen that for CouchGB1 testing
dataset, we can achieve as high as 94% top 1 recognition accuracy
and 99.51% top 10 accuracy when D=512. However, for the 30
sets of IncCouchDB data, the top 1 and top 10 average recognition
rates are only 82.77% and 96.18%, respectively. We can see that
several sets of samples (#5, 13, 16, 18, and 22) are particularly
hard to be recognized (with very low top 1 recognition
accuracies). This may be because of large deformations and the
unconstrained cursive styles of these handwritten samples. Fig. 3
gives some samples taken from them.

From Tables 2 and 3, it can also be seen that the recognition
accuracies do not drop down significantly when the dimension of
LDA space is reduced from 512 to 160 (as less as 0.17% and 0.05%
for CouchGB1 and IncCouchDB, respectively). Therefore, in the
following experiments, we set the dimension D for the reduced
LDA space as 160.

4.3. Performance on IncCouchDB after writer adaption using WILDA

From Table 3, we can see that the accuracy for the 30 sets of
IncCouchDB is not good enough. This may be due to the fact that
many of the writing styles of IncCouchDB are unseen in the
training dataset. It is expected that through the incremental LDA
learning on a part of specific writer training data, the baseline
classifier is trained to be adapted to the writer. In this experiment,
we update the LDA model using the incremental LDA algorithm
on the IncCouchDB data. For each writer’s handwritten data from
the IncCouchDB dataset, one half the handwritten samples are

“Fh 2 g T TERE é
AU F NG 0% 2
bl T U G 9 A Jed b,
"1 37 %\ﬂ A [
WMET % BFY hAM

Fig. 3. Some handwritten samples taken from #5, 13, 16, 18, and 22 of the
IncCouchDB dataset.

Classification accuracy (%) for the IncCouchDB dataset with different LDA dimensions D.

Writer # D=512 D=256 D=160 D=96
Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

1 88.51 97.69 98.58 88.53 97.70 98.58 88.33 97.69 98.60 87.63 97.50 98.57
2 90.45 97.95 98.70 90.39 97.95 98.70 90.08 97.94 98.68 89.43 97.80 98.68
5 75.33 90.30 93.39 75.29 90.35 93.40 75.01 90.19 93.28 73.89 89.67 92.91
13 69.87 87.42 91.39 69.88 87.40 91.38 69.50 87.25 91.33 68.33 86.82 91.01
16 67.44 85.39 89.89 67.39 85.33 89.84 67.04 85.11 89.66 65.87 84.34 89.12
18 60.32 81.87 87.54 60.29 81.93 87.50 59.94 81.77 87.39 58.66 80.87 86.80
22 43.83 66.23 73.95 43.88 66.21 73.92 43.43 66.00 73.67 42.16 65.06 72.99
23 91.37 98.41 98.91 91.29 98.40 98.92 91.13 98.40 98.88 90.41 98.25 98.82
30 85.16 96.15 97.68 85.07 96.14 97.68 84.83 95.98 97.60 83.57 95.57 97.39
Average 82.77 94.28 96.18 82.75 94.28 96.17 82.52 94.21 96.13 81.66 93.87 95.94
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Table 4

Performance comparison between with and without adaptations on the IncCouchDB.

Writer # Before WILDA (%) After WILDA (%) Error rate reduction (%)

Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10
1 88.33 97.69 98.60 95.09 99.21 99.54 57.89 66.03 66.88

90.08 97.94 98.68 96.65 99.33 99.54 66.19 67.29 64.96
5 75.01 90.19 93.28 90.44 97.09 97.86 61.73 70.34 68.07
13 69.50 87.25 91.33 82.29 93.91 95.93 41.93 52.22 53.09
16 67.04 85.11 89.66 84.63 95.50 97.13 53.36 69.77 72.26
18 59.94 81.77 87.39 78.59 92.93 95.45 46.55 61.24 63.91
22 43.43 66.00 73.67 75.47 90.78 93.66 56.63 72.88 75.91
23 91.13 98.40 98.88 97.03 99.19 99.37 66.52 49.74 43.24
30 84.83 95.98 97.60 95.15 99.11 99.38 68.02 77.97 73.98
Avarage 82.52 94.21 96.13 92.39 98.09 98.77 56.47 67.04 68.22

Table 5 Table 6

Performance comparison of WILDA against ILDA on writer adaptation.

Adaptation method Recognition rate (%)

Performance comparison of IncCouchDB dataset with different weighting para-
meters r.

R Before adaptation After adaptation Error rate

Top 1 Top 5 Top 10 (%) (%) reduction (%)
Without adaption 82.52 94.21 96.13 0.05 82.52 84.68 12.36
ILDA adaptation 86.92 97.04 98.42 0.1 82.52 86.49 22.71
WILDA (r=0.1) 86.49 95.99 97.40 0.2 82.52 89.43 39.53
WILDA (r=0.2) 89.43 97.10 98.16 0.3 82.52 90.89 47.88
WILDA (r=0.3) 90.89 97.58 98.45 0.4 82.52 91.96 54.00
WILDA (r=0.4) 91.96 97.93 98.69 0.5 82.52 92.39 56.47
WILDA (r=0.5) 92.39 98.09 98.77 0.6 82.52 92.82 58.92
WILDA (r=0.6) 92.82 98.20 98.84

used as training data for learning the WILDA model, and then the
remaining half samples are used to test the performance after the
WILDA adaptation.

The performance comparison between with and without
adaptations on the IncCouchDB is given in Table 4 in which we
set the incremental weighted parameter r=0.5 in this experiment.
From Table 4, it can be seen that the recognition accuracies for all
sets are improved significantly. In other words, the error rate is
reduced dramatically. In general, the average top 1 recognition
rate is improved from 82.52% to 92.39%, indicating a very high
error reduction of 56.47%=((17.48%—7.619%)/17.48%).

Taking the five writers (#5, 13, 16, 18, and 22) as examples, the
recognition rate is improved from 75.01% to 90.44% after WILDA
model adaption for writer #5, whereas the error rate decreases
from 24.99% to 9.56%, resulting in a reduction as large as 61.73%
(=(24.99%—9.56%)/24.99%).

Similarly, it can be seen that the recognition rate is improved from
69.50% to 82.29% for writer #13, 67.04% to 84.63% for writer #16,
59.94% to 78.59% for writer #18, and 43.43% to 75.47% for writer #22,
respectively. Overall speaking, the results in Table 4 clearly indicate
that the WILDA learning algorithm is very useful and effective for the
performance improvement for writer-specific adaptation.

4.4. Performance comparison of writer adaption using WILDA
against ILDA

This experiment is designed to examine the performance of
writer adaptation using the proposed WILDA algorithm against
the ILDA algorithm. The experimental results on IncCouchDB
dataset are given in Table 5.

From Table 5, it can be seen that by applying the ILDA writer
adaption learning, the top 1 recognition rate is improved from
82.52% to 86.92%, while by applying the proposed WILDA writer

adaption learning algorithm, it is improved to higher accuracies
ranging from 86.49% to 92.82% according to different values of r. It
can also be seen that when the weighted parameter r is no less
than 0.2, the recognition accuracy of the WILDA writer adaption
approach is significantly higher than the ILDA approach. This
clearly indicates that the proposed WILDA method is better than
the ILDA method for writer adaption in the application of online
Chinese handwritten character recognition.

4.5. Performance comparison on IncCouchDB using WILDA with
different weighted parameters r

This experiment is designed to examine the effect of different
weighted parameters r on the recognition performance. We set
the parameter r from 0.05 to 0.6, and the comparison of average
recognition rate of the 30 sets in IncCouchDB dataset before and
after adaptation is shown in Table 6.

Clearly, it is observed from Table 6 that our writer adaptation
method using WILDA can significantly reduce the error rate for
the 30 sets of writer-dependent dataset; meanwhile, the recogni-
tion accuracy is increased in accordance with the increase of the
weighted parameter r. This is reasonable due to the fact that
larger updating ratio r means that the new writer dependent
incremental data will have more contributions to updating the
WILDA model, resulting in better performance of the correspond-
ing updated classifier on the writer-specific data. From Table 6, it
can be seen that when the updating ratio is 0.6, the recognition
accuracy is improved from original 82.52% to 92.82%.

4.6. Performance comparison on CouchGB1 using WILDA and ILDA

It seems that the recognition performance after using the ILDA/
WILDA-based adaptation always achieves significant improvement
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Table 7
Performance comparison of writer-independent CouchGB1 dataset.

Without With Accuracy

adaptation (%) adaptation (%) loss (%)
ILDA adaptation 93.83 93.62 0.21
WILDA (r=0.05) 93.83 93.63 0.2
WILDA (r=0.1) 93.83 93.58 0.25
WILDA (r=0.2) 93.83 93.32 0.51
WILDA (r=0.3) 93.83 92.98 0.85
WILDA (r=0.4) 93.83 92.50 1.33
WILDA (r=0.5) 93.83 91.96 1.87
WILDA (r=0.6) 93.83 91.33 2.5

for all the writer-specific datasets in IncCouchDB. However,
a question may be whether such kind of adaptation has dramatic
negative impact on the general purpose writer-independent dataset
CouchGB1. This is particularly an important issue to be taken
for consideration, because we do not expect the adaptation to
specific writer's handwriting style at the cost of losing much
generality for other writer styles. To examine how the writer
adaption using the ILDA/WILDA affects the performance on general
writer-independent dataset, the recognition results of ILDA/WILDA
based writer adaptation approach on the general purpose writer-
independent dataset CouchGB1 after the classifier has been updated
using the specific user-dependent IncCouchDB have been demon-
strated in Table 7. This table also shows how the parameter of r
influences the performance of the WILDA based adaptation
approach on the writer-independent dataset CouchGBI.

As shown in Table 7, although the recognition accuracies for
the general purpose dataset decrease after the adaptation, the loss
is very small ( <3%), especially for ILDA and WILDA with small
values of r. This indicates that the proposed writer adaptation
methods can significantly reduce the error rate for writer-
dependent dataset. In the mean time, it has little negative impact
on a writer-independent testing dataset.

From Table 7, it can be observed that when r < 0.4, the accuracy
loss on writer-independent dataset is much smaller ( < 1%). When
r> 04, the proposed method may lose more than 1% accuracy on
writer-independent testing dataset. However, such quantity of loss is
acceptable (less than 3% even for large updating ratio r). Comparing
Table 6 with Table 7, it can be found that: (1) the improvement of
recognition accuracy for writer-specific dataset is much more
significant than the accuracy loss for general writer-independent
dataset; (2) the larger the updating ratio r is, the higher recognition
accuracy is for writer-specific data, and the lower but acceptable
recognition accuracy is for general writer-independent dataset; and
(3) a trade-off should be found between the performance for a
specific user dataset and that of the general dataset.

In a practical view, we suggest that the reasonable range of r
should be taken from 0.1 to 0.3. Under such settings, the proposed
adaptation method can reduce about 20.44-46.35% error rate on
the writer-dependent dataset while it has only less than 0.85%
accuracy loss on the writer-independent general dataset.

5. Conclusion

Writer adaptation converts a writer-independent system,
which is trained from the data contributed by a large group of
writers, to a writer-dependent system, which is turned for a
particular writer using a specific incremental data. This adaption
has potential advantage of significantly increasing recognition
accuracies for a particular writer, so it is very useful for a real
world application, such as building a personalized online hand-
written character input method. In this paper, a general solution

for incremental linear discriminant analysis (ILDA) is presented,
and a weighted incremental linear discriminant analysis (WILDA)
method by considering the issue of uncertain number of incre-
mental data for writer adaptation is proposed for online hand-
written Chinese character recognition. Based on the incremental
learning of the LDA model using ILDA or WILDA, the writer
adaptation is performed by updating the LDA transformation
matrix and the classifier prototypes in the feature space. From the
experimental results on general purpose writer-independent
dataset CouchGB1 and writer-dependent dataset IncCouchDB, we
can draw the following conclusions:

(1) Both ILDA and WILDA are very effective to improve the
recognition accuracy for different particular writers.

(2) The WILDA outperforms the ILDA for writer adaptation. The
proposed WILDA method can reduce as much as 47.88% error
rate on the IncCouchDB dataset while it only has as little as
0.85% accuracy loss on the CouchGB1 dataset when the
weighted parameter r is set to 0.3, showing the effectiveness
of the proposed writer adaptation approach.

One good property of our writer adaption approach based on
WILDA is that it can significantly increase the recognition
accuracy for the specific writer. In the meantime, it has little
negative impact on the performance of general writers.

(3
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